Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants.

نویسندگان

  • Judith Scharte
  • Hardy Schön
  • Zeina Tjaden
  • Engelbert Weis
  • Antje von Schaewen
چکیده

In source leaves of resistant tobacco, oxidative burst and subsequent formation of hypersensitive lesions after infection with Phytophthora nicotianae was prevented by inhibition of glucose-6-phosphate dehydrogenase (G6PDH) or NADPH oxidases. This observation indicated that plant defense could benefit from improved NADPH availability due to increased G6PDH activity in the cytosol. A plastidic isoform of the G6PDH-encoding gene, G6PD, displaying high NADPH tolerance was engineered for cytosolic expression (cP2), and introduced into a susceptible cultivar. After infection, transgenic (previously susceptible) lines overexpressing cP2 showed early oxidative bursts, callose deposition, and changes in metabolic parameters. These responses resulted in timely formation of hypersensitive lesions similar to resistant plants, although their extent varied considerably between different transgenic lines. Additional RNAi suppression of endogenous cytosolic G6PD isoforms resulted in highly uniform defense responses and also enhanced drought tolerance and flowering. Cytosolic G6PDH seems to be a crucial factor for the outcome of plant defense responses; thus, representing an important target for modulation of stress resistance. Because isoenzyme replacement of G6PDH in the cytosol was beneficial under various kinds of cues, we propose this strategy as a tool to enhance stress tolerance in general.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE INHIBITORY EFFECT OF DEHYDROEPIANDROSTERONE ON THE ACTIVITY AND ISOENZYME PATTERNS OF LIVER GLUCOSE 6-PHOSPHATE DEHYDROGENASE DURING DIFFERENT STAGES OF GROWTH

The effect of dehydroepiandrosterone (DHEA) on the activity and isoenzyme patterns of liver glucose 6- phosphate dehydrogenase (G6PD) was investigated in rats during different stages of growth. G6PD activity of mature rats was less than those of the immature (43%) and newborn (35%) animals. DHEA at 10 M) inhibited G6PD activity of the mature , immature and newborn rats by 79%, 39% , and 88%...

متن کامل

Protective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro

Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were ...

متن کامل

Characterization of Leishmania Species and L. major Strains in Different Endemic Areas of Cutaneous Leishmaniasis in Iran

Both zoonotic and anthroponotic cutaneous leishmaniasis (CL) caused by L. major and L. tropica, respectively, are endemic in different parts of Iran. This study was performed to investigate the new changes in epidemiological pattern of CL, and to identify the species of Leishmania and the strains of L. major isolated from different endemic areas of Iran. Seventy-two isolates from 245 samples co...

متن کامل

Protective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro

Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were ...

متن کامل

Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the las...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 19  شماره 

صفحات  -

تاریخ انتشار 2009